TALLAHASSEE AREA MINIMUM TEMPERATURE STUDY

Monthly Report-December 2001

National Weather Service-Tallahassee Department of Meteorology, Florida State University

Introduction

During the last twelve months, The National Weather Service in Tallahassee (NWS) and the Florida State University Meteorology Department (FSU) began a joint study on minimum temperatures in the Tallahassee (Leon County) area. This study utilizes a local network of observers that is sufficiently dense to determine the pattern of minimum temperatures in the area. Once a pattern is established, the participants will attempt to determine reasons for the spatial variations in temperature (i.e. soil type, topography, other and location factors). We will also determine whether the pattern varies seasonally and with synoptic events (i.e. clear vs cloudy, cold vs warm, and wind speed and direction). Armed with this information, forecasters and broadcast meteorologists will be able to provide more accurate and more site-specific forecasts of minimum temperatures, the probability of frost and the need for freeze warnings.

This initial year has focused on developing an observer network, providing maximum- minimum thermometers as necessary, conducting site surveys, and archiving the data. This report is anticipated to be the FIRST of what will be a monthly summary sent to all members of the observer network. Each observer also will receive a summary data sheet for their specific location. Both NWS and FSU are very appreciative of your continued efforts to collect and disseminate the data. We hope you will provide feedback about the study in general, and about your site in particular. This research is an evolving process and it is expected that future reports will be more detailed as we better understand local conditions.

December 2001

Eighteen observers were participating in the study and their locations are indicated on the attached map (Fig. 1). The observer locations represent a wide spatial distribution across Leon County.

Table 1 gives the raw daily minimum data for each location in the network. These data can be used to compare your site with the others in this study. Note that December 26-28th and 13th-15th generally represent the coldest and warmest periods, respectively, and can demonstrate how changing synoptic scenarios affect minimum temperature ranges. A cold front pushed through the area on

December 24th and in its wake, strong high pressure built in locally. With the frontal passage, winds shifted from southeast to northwest, increased and became gusty. As usual in winter, the coldest temperatures occurred several nights after a frontal passage when high pressure sank southward to the local area and dry north winds subsided to near calm. Overnight NWS airport observations, December 26th-28th, indicated clear skies and unlimited visibilities each night. This set up ideal conditions for radiational cooling, and the temperatures plummeted to their lowest values. Winds here decreased from an average of 8.6 mph on December 24th to 1.7 mph on December 28th. As the high began to move east and/or south in response to the next approaching front beginning on December 29th, winds become more easterly then southeasterly and local temperatures modified.

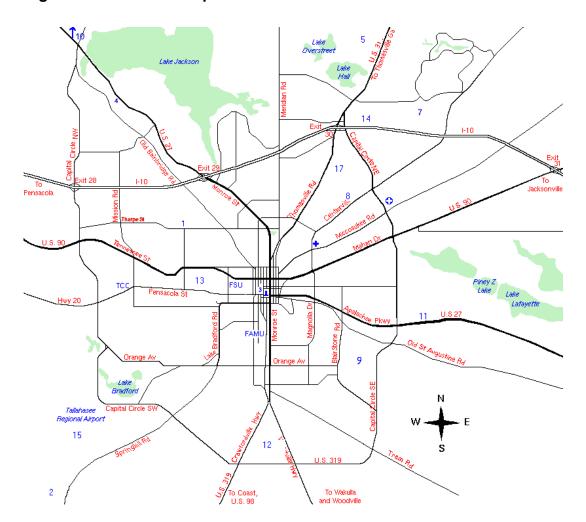
Conversely, winds on December 13th to 15th were from the southeast to southwest, ahead of an approaching front. Overnight observations indicated onshore, relatively moist low level flow that generated patchy to dense fog with stratus ceilings generally below 500 feet. This significantly limited outgoing radiation resulting in unseasonably mild predawn lows in the 60s.

On the coldest days of the month, the Tallahassee urban heat island showed a range of ten degrees on the 26th up to 17 degrees on the 28th, This range is significant for a small city like Tallahassee, and it increases as winds decrease and radiational cooling increases. During the mildest nights, the range was only about five degrees. This implies that temperature ranges are noticeably larger during cold outbreaks.

Figure 2 is a histogram that shows how each site ranks in comparison to the other 17 sites in this December study.

Table 2, labeled "Frequency of Extremes" smooths out skewed results that are due to missing data. It is more informative than simple raw data or rank histograms, telling how many times (and the percentage) that your station ranked as one of the coldest or warmest three sites on a particular day.

Of immediate significance to forecasters, is that the Tallahassee airport is not the coldest location in the county. In fact, quite the opposite, only once (out of 31 days) did it rate as one of coldest three sites but on ten days (32.3%) it ranked as one of the three warmest sites.


Although the same locales are consistently the coldest, especially Lundy, Canopy Oaks, Binkley and Nayak in that order, the data indicate some interesting preliminary conclusions. During the day, immediately after a frontal passage when above normal and often gusty north winds prevail, those sites identified as being in the northern quadrant of the observer network are often the coldest while more southern sites, farthest from the unimpeded influence of these winds are slightly more moderated. However, several days later when winds die out

and radiational cooling dominates, there is a more even spatial distribution of cold sites. More exposed sites often reveal the coldest temperatures and the "northern bias" disappears.

Summary

This is the initial report by for the Tallahassee minimum temperature study. Since it represents only one month of data, preliminary assessments may be modified when additional data are collected. Future reports anticipate comparing the current winter data with that of last winter (and hopefully comparing all months) to strengthen our conclusions. Nevertheless, even after only one month, the data imply that the Tallahassee urban heat island is more complex and the minimum temperature ranges are more varied than previously anticipated. Future reports will investigate the reasons for these occurrences in more detail.

Figure 1: Observers Map

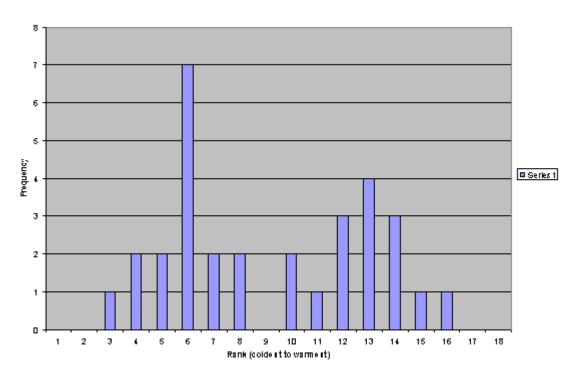
Table 1: Daily Minimum Temperature Data

Dec-01 13			3 16	4	5	6	7	8	9	10	11	12
1.Bellenot 66	56 65	50 66	52 60	53	57	58	60	61	61	62	55	57
2.Binkley	52 61	42.6 65.3	41.2 61.9	46.4 59.4	46.6	50.2	52.5	45.1	61	59.4	57.2	58.1
3.Brogan 66	58 65	53 67	54 64	54	58	61	64	65	64	63	57	58
4.Canopy	51 61	42 59	43 57	47	46	50	53	57	57	56	50	54
5.Chiles 62	50	43	43	47	47	52	53	53	57	55	50	53
6.Elsner	58	47 66	47 60	51	51	54	56	59	62			
7.Fiorino	51.7 63.3	45.2 65.3	43.1 61.1	47.6 58.9	47.4	50.5	54.5	56.7	61.4	57.2	55.3	57.7
8.Fuelberg 66	58 65	47 66	48 60	51	51	55	57	58	62	61	56	57
9.Lericos 64	68 62	58 66	48 60	52	52	57	57	68	62	59	55	56
10.Lundy 62	54 61	43 60	40 58	44	45	48	51	56	58	56	53	57
11.Nayak 63	61	61	47 58	49	52	54		57	61	58	55	55
12.Oak R.	50 61	43 61	42 58	49	52	54	52	55	61	59	54	55
13.Sharp 63	63	44 65.5	45.5	52	52	56	56	58	61.5	62		56
14.Stuart 64	58 64	48	50	51	54	56	58	60	60	60	54	56
15.TLH 66	56 64	44 66	43 59	49	47	50	54	58	63	61	57	58
16.W akulla 66	56 67	49 66	47 64	57	52	53	57	59	65	62	59	58
17.Watson	53 61	46 61	47 60	50	50	54	56	57	60	58	56	56
18.WCTV	55 63	43 61	44 55	49	47	52	54	55	57	58	52	55
Average 8		63.35	63.40						60.77		•	00.2
St. Dev. 1.519			3.773 2.821		3.714	3.287	3.217	4.727	2.306	2.393	2.512	
Dec-01 29	17 30	18 31	19	20	21	22	23	24	25	26	27	28
1.Bellenot 43	66 39	50 36		43	40	42	50	42	39	28	29	34
2.Binkley	64.4 37.8	46.4 36.7	35.6 29.5	37.2	26.2	29.6	39.2	38.8	36.7	23.2		20.9

3.Brogan 48	66 41	56 39	49	46	44	45	56	45	43	33	35	42
4.Canopy 36	33	46 30	38	39	33	31	41	39	36	24	22	27
5.Chiles		42	38									
6.Elsner 42	65 39	35	42	44	37	45		43	40	30	24	30
7.Fiorino	62.6 38.9	44.8 32	39.9 32	38	31.5	31	41.9	40.2	39.9	27.5	25	28.2
8.Fuelberg 41	65 40	52 35	43	43	37	35	44	43	40	30	27	30
9.Lericos 43	64 40	48 36	43	45	46	38						31
10.Lundy 36	60 33	48 29	37	37	28	29	39	40	35	24	21	25
11.Nayak	63	49	41									
12.Oak R. 36	62 37	42 30	37	40	31	30	43	42	38		22	25
13.Sharp 39	60	47 32	38.5	38	34	35				25	23	27
14.Stuart												
15.TLH 38	65 41	51 31	38	44	31	31	41	47	41	27	24	27
16.W akull 42	69 41	46 35	42	42	32	34	44	45	41	31	27	31
17.Watson	64 39	46 33	42	42	39	34	42	43	40	28	26	29
18.WCTV 37	62 34	43 31	38	39	32	34	46	40	37	24	24	26
Average 7	63.86 39.83	47.32 37.55	40.12 32.9	41.14	34.78	34.90	43.92	42.15	38.96	27.28	25.30	28.8
St. Dev. 4.803	2.373 3.493	3.737 3.279	3.340 2.953	3.001	5.631	5.338	4.855	2.519	2.292	3.117	3.705	

Summary Data for December 2001 Mr. Ron Block: NWS Tallahassee

Average Minimum: 47.5 Coldest Minimum: 24 Date: 12/27 Warmest Minimum: 66


> 12/13 and 12/15 Date:

Total Number of Freezes: 6

Days With Observations: 31 Missing Days:

Figure 2: Rank Histogram

TLH

Table 2: Frequency of Extremes

Site	Total Obs		Coldest 3	Warmest 3	% in Coldest 3	% in
Warmest 3						
Bellenot	30	0	14	0	46.7	
Binkley	30	17	3	56.7	10	
Brogan	31	0	26	0	83.9	
Canopy	29	20	0	69	0	
Chiles HS	14	9	0	64.3	0	
Elsner	24	0	1	0	4.2	
Fiorino	31	2	0	6.5	0	
Fuelberg	31	0	5	0	16.1	
Lericos	26	0	8	0	30.8	
Lundy	31	24	0	77.4	0	
Nayak	16	3	0	18.8	0	
Oak Ridge	29	12	0	41.4	0	
Sharp	24	1	1	4.2	4.2	

Stuart	14	0	4	0	28.6
TLH	31	1	10	3.2	32.3
Wakulla	31	0	16	0	51.6
Watson	30	0	1	0	3.3
WCTV	30	4	1	1.3	3.3